Complex numbers, Argand diagrams, modulus and argument, De Moivre's theorem. Functions of a complex variable, elementary examples, Cauchy-Riemann equations. Contour integrals, Cauchy's theorem and Cauchy's integral formula. Taylor series, Laurent series, zeros, poles and essential singularities, residues. Fourier transform, inversion, convolution, Parseval's theorem, delta function, applications. Elementary partial differential equations, methods of separation. Brief introduction to special functions, e.g., gamma function, beta function, Bessel's function, Legendre's function.
| Academic Units | 3 |
| Exam Schedule | Tue May 05 2026 00:00:00 GMT+0000 (Coordinated Universal Time) 09:00-11:00 |
| Grade Type | Letter Graded |
| Department Maintaining | MATH(SPS) |
| Prerequisites | MH1801 & MH2800 OR MH1101 & MH1200 OR MH1200 & MH1802 & MH1803 OR MH1802 & MH1803 & MH2802 OR CY1601 & CY1602 |
| Mutually Exclusive | |
| Not Available to Programme | EEE, EEEC, IEEC, IEM |
| Not Available to All Programme | , |
| Index | Type | Group | Day | Time | Venue | Remark |
|---|---|---|---|---|---|---|
| - | LEC/STUDIO | LE | TUE | 0930-1120 | SPMS-LT2 |
0930
1030
1130
1230
1330
1430
1530
1630
1730
MH2801
LEC/STUDIO | SPMS-LT2
MH2801
70756
TUT | SPMS-TR+14
Teaching Wk2-13
MH2801
70757
TUT | SPMS-TR+14
Teaching Wk2-13
MH2801
70758
TUT | SPMS-TR+14
Teaching Wk2-13
We would encourage you to review with the following template.
AY Taken: ...
Assessment (Optional): ...
Topics (Optional): ...
Lecturer (Optional): ...
TA (Optional): ...
Review: ...
Final Grade (Optional): ...