This course is an introduction to the theory of complex variables that is useful in many branches of pure and applied mathematics. Analytic functions of one complex variable, Cauchy-Riemann equations. Contour integrals, Cauchy's theorem and Cauchy's integral formula, maximum modulus theorem, Liouville's theorem, fundamental theorem of algebra, Morera's theorem. Taylor series, Laurent series, singularities of analytic functions. Residue theorem, calculus of residues. Fourier transforms, inversion formula, convolution, Parseval's formula. Applications.
Academic Units | 4 |
Exam Schedule | Wed Nov 26 2025 00:00:00 GMT+0000 (Coordinated Universal Time) 13:00-15:00 |
Grade Type | Letter Graded |
Department Maintaining | MATH(SPS) |
Prerequisites | |
Mutually Exclusive | |
Not Available to Programme | PHMS |
Index | Type | Group | Day | Time | Venue | Remark |
---|---|---|---|---|---|---|
70260 | LEC/STUDIO | LE | WED | 1030-1120 | SPMS-LT4 | |
70260 | LEC/STUDIO | LE | THU | 1630-1820 | SPMS-LT3 | |
70260 | TUT | T | WED | 0930-1020 | SPMS-LT4 | Teaching Wk2-13 |
0930
1030
1130
1230
1330
1430
1530
1630
1730
MH3101
TUT | SPMS-LT4
Teaching Wk2-13
MH3101
LEC/STUDIO | SPMS-LT4
MH3101
LEC/STUDIO | SPMS-LT3
We would encourage you to review with the following template.
AY Taken: ...
Assessment (Optional): ...
Topics (Optional): ...
Lecturer (Optional): ...
TA (Optional): ...
Review: ...
Final Grade (Optional): ...