We got your back! We are coming back with more features and improvements. Read more here.

IE4483 ARTIFICIAL INTELLIGENCE & DATA MINING

This course aims at introducing you to the fundamental theory and concepts of Artificial intelligence (AI) and Data Mining methods, in particular state space representation and search strategies, association rule mining, supervised learning, classifiers, neural networks, unsupervised learning, clustering analysis, and their applications in the area of AI and Data Mining. This can be summarized as: (a) To understand the concepts of knowledge representation for state space search, strategies for the search. (b) To understand the basics of a data mining paradigm known as Association Rule Mining and its application to knowledge discovery problems. (c) To understand the fundamental theory and concepts of supervised learning, unsupervised learning, neural networks, several learning paradigms and its applications. Contents: Structures and Strategies for State Space Representation & Search. Heuristic Search. Data Mining Concepts and Algorithms. Classification and Prediction methods. Unsupervised Learning and Clustering Analysis.

Academic Units3
Exam ScheduleNot Applicable
Grade TypeLetter Graded
Department MaintainingEEE
Prerequisites

MA2006 & MA2018 OR MH2802 & PS0002 OR MH1201 & PS0002 OR MH1802 & MH1804 & PS0002 OR CB0494 & CB1117 OR CV0003 & CV2019 OR CV0003 & MH2814 & MT2004 OR SC1004 & SC1015 OR EE2107 & MS0003 OR EE0005 & EE2007 OR EE0005 & EE2107 OR EE0005 & IM2007 OR IE0005 & IE2007 OR EE0005 & IE2007 OR IE0005 & IE2107 OR EE2207 & IE0005 OR IE0005 & IM2007 OR EE0005 & IE2107

Not Available to ProgrammeACBS, ACC, ADM, AISC, ARED, BACF, BASA, BCE, BCG, BEEC, BIE, BMS, BS, BSB, BSPY, BUS, CBE, CBEC, CE, CEE, CEE 1, CEEC, CHEM, CHIN, CMED, CNEL, CNLM, COMP, CS, CSC, CSEC, CVEC, DSAI, ECMA, ECON, ECPP, ECPS, EEE 1, EESS, ELAH, ELH, ELHS, ELPL, ENE, ENE 1, ENEC, ENG, ESPP, HIST, HSCN, HSLM, LMEL, LMPL, LMS, MACS, MAEC, MAEO, MAT, MATH, ME 1, ME(DES), ME(IMS), ME(NULL), ME(RMS), MEEC(DES), MEEC(IMS), MEEC(NULL), MEEC(RMS), MS(ITG), MS(NULL), MS-2ndMaj/Spec(MSB), MTEC, PHIL, PHY, PLCN, PLHS, PPGA, PSLM, PSMA, PSY, REP(ASEN), REP(BIE), REP(CBE), REP(CE), REP(CSC), REP(CVEN), REP(ENE), REP(MAT), REP(ME), SCED, SOC, SPPE, SSM
Not Available as BDE/UE to ProgrammeEEE, EEEC, IEEC, IEM, REP(EEE)

Prerequisites Tree

IE4483requiresone ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofall ofIE2107EE0005IM2007IE0005IE0005EE2207IE2107IE0005IE2007EE0005IE2007IE0005IM2007EE0005EE2107EE0005EE2007EE0005MS0003EE2107SC1015SC1004MT2004MH2814CV0003CV2019CV0003CB1117CB0494PS0002MH1804MH1802PS0002MH1201PS0002MH2802MA2018MA2006

Indexes

IndexTypeGroupDayTimeVenueRemark

Course Schedule

0930

1030

1130

1230

1330

1430

1530

1630

1730

MON
TUE
WED
THU
FRI
SAT

Reviews & Discussion

We would encourage you to review with the following template.

Review Template

AY Taken: ...

Assessment (Optional): ...

Topics (Optional): ...

Lecturer (Optional): ...

TA (Optional): ...

Review: ...

Final Grade (Optional): ...


© 2025 NTUMODS Dev Team. All rights reserved